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INTRODUCTION

In basic function a .annon 18 a pressure vessel, since it must centain
pressure 1in repeated application during its use, Thus, the engineering
analysis of fracture of cannons has application to pressure vessels in
general. Further, the geometry and materials used for cannons are often used
in other pressure vessel applications, such as high pressure piping and high
pressure containers for chemical processes. Because of such common features
betwean cannons and other pressure vessels, a description of fracture of
cannons should be of relatively general interest,

The objective of this report 1s to describe some key elements of the
fracture analysis of cannon pressure vessels performed by our laboratory, both
early and recent work. The discipline of linear elastic fracture mechanics
will predominate, because the failure of a cannon 1s usually a crack growth
process. The description is in three parts. First is an outline case study
of an early brittle faflure of a cannon. This is followed by a sﬁmmary of
recent fracture-test-method development work and finally by examples of
fracture analysis, all of which are outgrowths of the early concern with

brittle fracture.

AN EARLY FALLURE
An unexpected failure of a critical structural component is a remarkably
effective impetus to engineering analysis., The Army expcrienced a premature

field fallure of a cannon tube during the 1960's, and this provided a signifi-

cant impetus to fracture uanalysis of cannon, particularly the pressurized com-




| ponents. The then new methods of fracture mechanlcs were used to determine
the cause of failure and to help with the redesign in order to prevent any
further problems., The details of the fallure are described in Reference 1;
b ( only certain important features will be discussed here. A photo of the
fractured pleces of a component can convey a great deal regarding the nature
s and extent of the failure. Figure 1 showg the remains of the portion of the

;T. 175 wm cannon which was subjected to the highest pressure during firing. The

%‘ extent of fragmentation in this portion is a clear indication of a classically
brittle failure. Some of the fragments were thrown as far as 1000 m, further
evidence of brittle fracture. By uslag fracture mechanics, 1t shouid be

possible to quantitatively describe this brittle failure and the design b

changes required to prevent such a failure.

—— -t e e a2

A description of the conditions which led to the brittle failure as well

[P

: : as the redesign conditions is presented in ocutline form in Figure 2. 'The
basic geometry and the pressure loading, p, of the fallure location are
given.* See Figure 3 for nomenclature. The material used was a forged alloy

steel similar to ASTM A723, Grade 2 for pregsure component applications.

Conventional air melting practice for the cannon which failed resulted in 7.0
J Charpy impact energy at —-40°C and 90 MPa ml/2 plane-strain fracture

toughness, Kpq, when heat treated to 1180 MPa yleld strength, Oyg»

—— - -

Ipavidson, T. E., Throop, J. F., Underwood, J. H., “"Failure of a 175 MM Cannon - 4

Tube and the Resolution of the Problem Using an Autofrettage Design,” Case p
Studies in Fracture Mechanies, T, P, Rich and D. J. Cartwright, Eds., AMMRC

MS 77-5, Army Materials and Mechanics Research Center, 1377.

*Note that the inner radius of the cylinder, rj = 89 mm, is a bit larger than
half of the nominal cannon size, because r] includes the depth of the
rifling grooves.
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The critical crack which initiated the failure was found in the area
which is subjected to both high pressure and the stress cgncentrations of the
N rifling. The deepest fatigue crack in thias area became the critical crack
with depth, a;, shape an/2¢c, and relative depth, a./W as indicated in Figure
> 2. The critical crack had the C-R* orientatiomn, shown in Figure 3. Fatigue
cracks were observed to initiate almost immediately 4in the cannon; the coubi-
T nation of transformational and thermal stregses at the inner radius during

e firing could lead to a network of heat-check cracks as deep as 1 mm in about

) ten firing cveles. Growth from such an initial, heat-check crack to the final
: depth of 6.4 mm occurred in 600 £iring cycles, with most cycles at an internal
'; pressure of 345 MPa. Overlooking for the purposes here the specific processes
{ by which the crack grew, the dominant fact is that brittle fracture occurved

& : with a crack depth of only one tenth of the wall thickness., If it can be

é shown that the stress intensity factor, K, which was applied to the cannon at
failure 18 close to the measured plane-strain fracture toughness, K., this
would explain the failure and initiate a proper approach for redesign.

- An expression for K of an interrally pressurized cylinder with a C-R

( orientation surface crack at the inner radius can be written based on a i

o g ey e e o

combination of the work of Bowle and Freese? and Newman and Rajut:?

PR PRI N

E ! K = fpfg p(ma)l/2 (D

{ 280wie, O, L. and Freese, C. E., "Elastic Analysis For a Radial Crack in a :

! Circular Ring,” Engineering Fracture Mechanics, Vol. 4, 1972, pp. 315-321, §

. 3Newman, J. C., Jr., and Raju, I. S., "An Empirical Stress-Intensity Factor R

u;i Equation for the Surface Crack,” Engineering Fracture Mechanics, Vol. 15, ‘

1981, pp. 185-192, i

*Plane normal to the circumferential direction, growth in the radial
direction, see ASTM Method E399.
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In Equation (1) fp is a dimensionless factor which accounts for the specific
radius ratio, rp/rj and relative crack depth, &/W of the cylinder undet
consideration; it can be obtailned from the collocation rusults of Reference 2.
The factor fg accounts for the crack shape, a/2c and a/W, and is obtained
following some calculatinns from the equations of Reference 3 which are based
on finite element results from plates under tensior. and bending loads. Tt is

often necessary to use a weighted shape factor, fg, which accounts for the

-

relative proportions of tension and bending load in a cylinder. For the a/2c

and a/W at failure of the cannon here, this 1is not necessary because fy for

oA el el

hoth tension and bending is clese to 0.70. Thils means that X at the point of

deepest penetration of the surface crack 1is 0,70 times that of a straight-

. fronted crack of the same depth in the cylinder, Using this value and fj =
2.70 from Reference 2, gives an applied X at faillure of 112 MPa ml/z, which 1s
1.24 times the value of Kjs. An applied K required for fracture which is
somewhat above Ky, would be expected because of the loss of plane-strain

E ; constraint at the crack tip caused by the small crack depth.,* Therefore the
brittle failure of the cannon is satisfactorily explained, and linear elastic

fracture mechanics seems appropriate for use in the redesign process.

DR

: 2Bowie, 0. L. and Freese, C. E., "Elastic Analysils For a Radial Crack in a

f Circular Ring,” Engineering Fracture Mechanics, Vol. 4, 1972, pp. 315-321.
! 3Newman, J. Co, Jr., and Raju, I. S., "An Empirical Stregs~-Intensity Factor
Fquation for the Surface Crack,” Engineering Fracture Mechaniecs, Vol. 15,
1981, pp. 185-192.
- *When the crack tip 1s near a free surface, whether due to a shallow crack
*5' near the “frout"” surface or a deep crack near the "back” surface, there is a

loss of plane-strain constraint.
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Redesign

The objective of the cannon redesign was the same as that often applied
to critical pressure vessel components, a leak-before-break criteria for any

crack-related failure., When a leak-hefore-break can be assured, a contained

failure of the vessel occurs of the type shown in Figure 3 for a cannon.%

In this case severe heat-checking of the inner radius (bottom of photo)

quickly initiated a crack which grew by fatigue to a point about nine tenths
through the wall thickness (light band near top of photo). The final fast
failure through to the outer radius occurred as a relatively short, through

crack which showed no tendency to run down the axis of the cylinder.

Three basic changes were made with the 175 mm cannon in order to increase
the material fracture toughness relative to the applied K and therefore
achieve a leak-before-break condition: (1) The specified yield strength was
decreased from a nominal 1180 to 1030 MPa, (2) Vacuum melting practice was
incorporated for the steel, as is now required in ASTM A723 steel. (3) Com-
pressive residual stresses were produced near the inner radius cof the cannon
by an overstraining process, The important effect of the first two changes
was a significant increase in the average =40°C Charpy impact energy and the

fracture toughness, see Figure 2, The primary intended effects of the over-

strain residual stress were to compensate for the decrease in yleld strength*

4Underwood, J. H, and Threoop, J. F., "“Surface Crack K-Estimates and Fatigue
J.ife Calculations in Cannon Tubes,” Part-Through Crack Fatigue Life 1
Prediction, ASTM STP 587, J. B. Chang, Ed,, American Soclety for Testing and ‘
Materials, 1979, pp. 195-210.

*The compressive residual stress at the inner radius, where the applied
tensile stresses arc maximum, more than compensates for the drop in tensile
yield strength.
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and Lo decrease the rate of growth of fatigue cracks (discussed in an upcoming
section). 1In addition, the residual stress can be seen to have a heneficial
effect on brittle fracture.

Expressions are available for the r~eidual stresses 1in an overstrained
cylinder. For the plastically overstrained portion of a cylinder, rj < r «

fyg, and using the Tresca yleld condition, the ciccumferential residual

stress 1sd

.. 96-R r)? ry? rys“rZ2 Tyg rygl+ra? ry

| ———- = ——E-—-E) 1+ ——-](——-‘-5—- = ln »~~) + (==7==3-= - In =)
oo Oys ro“-r} r 21y r) 2rp r
o
F ; For the elastic portion of a partially overstrained cylinder, ryg < r < £g,”
§; 1 06-R rp? rys2 r]? rysz'rZ2 Lys
E“f : - = [1 + ""2-"][——-'5 + RN (-———-——72'--' - 1n —--)] (3)
o Jys r 2rp roc-r] 2rp 1|
Ef,{ "gure 4 shows plots of Equations (2) and (3) for a cylinder with rp/ry = 2.0

| for 504 and 100% overstraln conditions, that is, for ideal overpressures of a

cylinder where plastic deformation proceeds half and full way through the wall

G

thickness. Also shown in Figure 4 are modified residual stress distributions
which are corrected for the veduction in compressive yield strength which

[ occurs in the steel considered here following tensile yielding. TFor example,

following the approximately 1% tensile plastic strain at the inner radius
which occurs during 100% overstrain of an rp/ry = 2.0 cylinder, the compres-

o sive yleld strength is only 0,53 times the unaffected value,® so the residual

—— e e e

5l)avids:m, T. E., Kendall, D. P. and Reiner, A. N., "Residual Stresses in
Thick-Walled Cylinders Resulting From Mechanically Induced Overstrain,”
Lo Experimental Mechanics, Vol. 3, 1963, pp. 253-262.
. 6Miiiigan, R. V., Koo, W. H., and Davidson, T. E., "The Bauschinger Effect in
a High-Strength Steel,” Journal of Basic Engineering, Transactions ASME, Vol,
88, 1966, pp. 480-488.
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strees relative to yleld strength is veduced from the ideal value of 0.85 to
0.53. Such effects of compressive strength reduction on rasidual stress and
thus indirectly on fatigue crack grow.h rate aud fatiguellife, are described
firther in an upcoming section.

The effect of residual stress, including the appropriate compressive
strength reduction, on brittle failure of the redesigned cannon can be
determined as follows. From Figure 4, for 50% overstrain which was used in
redesign and for the relatively shallow crack depth of the prior failure,
r/r} = 1.10, the residual stress is 0.38 times the yield strength, og—g = -390
MPa  This value* can be used in a modification of Equation (1) to obtain an
approximate K expression which includes the effect of residual strees,

K = fpfg p(1a)}/2 + 1,12 fg op-g(ma}l/2 (4)
Using gg_g = -390 MPa and with all other values as before, the applied K with
recidual stress present 18 significantly reduced, see Figure 2. This,
combined with an increased Ky, makes fallure at such small crack depth (a =
G+1W) quite unlikely. Failure at a deep crack is still possible, but for a
deep crack for which the benefits of residual stress diminish, the loss of
plane—-atraln constraint as the crack approaches the outer radius causes an
increase in effective fracture toughness. This will tend to compensate for
the loss of benefit from residual struss, Of course, the proof of the
redesign 1s in the experience. Since the redesign of the 175 mm cannon to the

material property and residual stress conditions indicated in Figure 2, there

*This value 1s correct for a cylinder with rp/r; = 2.00, whereas the cannon
being considered has rp/r) = 2.09, The difference between the two results
will have no effect on conclusions drawn from the analysis.

A




have been no further brittle failures, even after many times the number of

firing cycles of the early failure.

TEST METHOD DEVELOPMENT

The importance of fracture toughness testing to the structural Iintegrity
of high strength pressure vessels 1s apparent from the preceding discussion.
When brittle fracture 1is possible, fracture toughness testiny is essential.
In reaction to this, a new fracture specimen has been developed which 1is
uniquely suited to cylindrical pressure vessels.’ First called the G-shaped
specimen, more recently the arc specimen, it 1s now used worldwide and is part
of ASTM Method E-399 for Plane~Strain Fracture Toughness of Metallic
Materials.B

The arc specimen 1is shown in Figure 5 along with the dashed outline of
the rectangularly shaped compact specimen. By using the full wall thickness
of a cylinder, the arc specimen both saves fabrication time and ylelds a
larger effective sperimen depth, W, than does a rectangular specimen taken
from the same cylinder,

The development. of the arc specimen included boundary value collocation
and experimental comnliance stress intensity factor, K, analyses of

prospective geometries by three different laboratoirtas,9 A saaple of rvesults

— - et et et i =

7Kendall, D. P, and Hussaln, M. A., "A New Fracture Toughnes: Test Method for
Thick-Walled Cylinde. Material,” Experimental Mechanics, Vol. 12, 1972, pp.
184-189.,

8"Standard Test Method For Plane-Strain Fracture Toughness of Metallic
daterials,” E-399, Auuual Book of ASTM Standards, Part 10, American Society
for Testing and Msterlals, 1981, pp. 588-618.

9Underwood, J. H. and Kendall, D, P., “Fracture Toughness Testing Using the
C-Shaped Specimen,” Divelopments in Fracture Mechanics Test Metrhods
Standardization, ASTY UTP 632, W. F, Brown, Jr. and J. G. Kaufwan, Eds.,
American Society fur Testing and Materials, 1977, pp. 25-38.
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from these analyses is shown in Figure 6. In general, and as shown in Figure

6, the agreement between the collocation results from two different labora-
tories and wmethods was excellent, within a few tenths of a percent. The good
agreement, within a few percent, between the experimantal compliance K values

and those from collocation is a further independent check on the stress and K
analyses of the arc specimen.

Polynomial expressions have been developed to rapresent the collocation
results while still converging to the exact limit solution for shallow and

deep cracks. A recent extension of an earlier expression is accurate within

t three percent over a wide range of geometry* for arc specimens and is part

of ASTM Method E39%, It islf

(5)1/2
kel /” 3X a a s ry W
=== = (2= 4 1.9 + 141 =]{1 4 0.25(1 = =) (1 = ==) J[-m==mmmen] -
13 W W W o .
(1 --)3/2
W
; a 8.2 83
[3.74 - 6.30 = + 6.32 (=)2% - 2.43(=)3] (5)
W W W
a ri X
for 0,2 < -% 1, 0¢ - < 1,0, 0 < = < 1.0,
W ry w

The key to a wide range K expression, as discussed by Srawley,ll is

attention to deep crack limit solutions. For the arc spacimen the important

solution is bending of the uncracked ligament ahead of a deep crack approach-

10Kapp, J. A., Newman, J. C., Jr., and Underwcod, J. H., "A Wide Range Stress
Intensity Factor Expression For the C-Shaped Specimen,” Journal of Testing

and Evaluation, Vol. 8, 1980, pp. 314-317.
llSrawiey, J. E., "Wide Range Stress Intensity Factor Expressions for ASTM

E-399 Standard Fracture Toughness Specimens,” International Journal of
Fracture Mechanics, Vol. 12, 1976, pp. 475-476.
*For the specific geometries of K. testing, the expression 1is accurate within

t one percent,
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ing a free surface, in this case the outer radius. 1In the terminology
here, the deep crack limit K is:

X 1 a
3.975[- + - + =]
W2

- --- (6)

kBwl/2

P a
(1 - =)3/2

W
where the bracketed term is the bending moment arm for the arc specimen.

The form and constants of Equation (6) and a similar tension limit
solution were used in developing the wide range K expr- . lon for the arc
specimen. Because K converges to the proper deep crack ..mit, the apecimen
can be used for fatigue crack growth testg and other fracture mechanics tests

which involve deep cracks. The arc specimen can also be used for J-integral

tests Lo measure Jrc and for tests involving bending loads, although specific

procedures for these tests have not been well documented yet.

EXAMPLES OF FRACIURE ANALYSIS

Fracture of pressure vessels can be categorized using three basic types

of crack growth: fast crack growth, environmentally assisted crack growth,

and fatigue crack growth. A recent example of each type of crack growth In
cannons 1is given here to 1llustrate cutrrent applications of {racture mechanics

to cylindrical pressure vessels.

bt cimagbac, . s, | sl
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The beneficial effect of lowering the yield strength in preventing fast,

-

brittle fracture was included in the discussion of the early failure. The

strength level effect is so basic to fracture concerns with pressure vessels
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that it should be congidered further. Figure 7 shows test results from eight

different types of forged cylindrical pressure vessels,l? some for prototype
cannons, some for research purposes, The material is the ASTM A723 steel

discussed earlier, with vacuum processing used in all cases. The vacuum

processing and rhe prototype nature of the forgings combine to give fracture
r toughness vaiues which are near the upper limit for this class of material.
e Nevertheless, the results show clearly the typical decrease in toughness which

!
iu,' 1s obtained with an increase in yleld strength. This 1is a consistent tcend for
e

o the ASTM Ky, measurements, for Ky, measurements with a smaller than required
éFﬂ specimen size, and for Ky_ calculated from the result of J-integral, Jjc tests.
. The lineac regression line and t 10 percent limits show that, only for the

material and strength range here, there 1is an inverse linear relation between

M;i toughness and strength with relacively little scatter. The variation of -40°C
o

P notched impact charpy energy with room temperature yield strength is also shown

in Figure 7 for six of the eight types of forgings. Again, an inverse relation

> exlsts between charpy energy as a measure of toughness and yield strength.
E, Note that it is not a linear inverse relation, so linear correlations between
L’{ charpy energy and Kyo should not be attempted.

{ The likelihood of fast cracking 1is certainly affected by factors other

than the material fracture toughness. A recent experience with a pressure

vesgel demonstrates the effects of crack shape and tensile residual stress on

e - A

12Underwood, J. H., "The Equivalence of Kj. and Jy. Fracture Toughness

Measurements in Ni~Cr-Mo Steels," Experimental Mechanics, Vol. 18, .¥78, pp. ;
350-355.
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fast c~racking. A 1.5 m long, overstrained cylinder with r] = 79 mm and rp =
142 mm was cyclically pressurized with oil from 0 to 386 MPa., A fatigue crack
initiated at a 10 mm deep, 25 mm wide, 550 mm long longitudinal notch on the
outer diameter, The fatigue crack grew to the critical size at which ¢

< controlled fast cracking occurred. The resulting failure did not involve

] fragmentation, so it was not a brittle failure in that sense, but nelther was
i {t a leak-~before-break fallure, Figure 8 shows a portion of the fracture

S surface, as well as the distribution of overstrain residual stress present 1in

Lhe cylindzsz tafore fracture. The maximum depth of the notch plus the i
critical fatigue crack was 16 mm, only about one quarter of the cylinder wall
thickness when fast fracture of the remaining wall thickress and the entire
cylinder length occurred.
| Fast frecture from such a shallow crack was affected by (1) the tensile
residual stress in the outer portion of the cylinder due to the 100%
overstrain, and (2} the long, straight-fronted crack shape due to the notch,
- A neasure of the effect on the applied K of these two factors can be obtained
{_1 from an expression for K for an OD crack in the cylinder. The expression is
{ obtained using an approach similar to that for Equation (4):
K = 1.12 £ (0g-p + 0o-p)(ma)l/2 (7
( The shape facior, fg, has a value very near 1.0, because the crack is
essentially straight-fronted. So the reduction in K associated with the more
usual semielliptical shaped crack is not present in this case due to the
| sngitudinal notch. The tensile residual stress at the location of the

critical crack, dg-p, can be estimated from Figure 4 as about 0.22 times the

| yield strength, 1230 MPa. This estimate, 270 MPa, takes into account the

i 12
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reduced compressive yield strength discussed earlier and the fact that r/r] =
1.8 for this cylinder.. The tensile applied stress in the cylinde: can be
calculated from the well known relation for a cylinder:l3

pl1 + (rp/r)?]

Og-p = (rz/r1)2 -1 (8)

In the above ry/r = 1,13 for a crack one quarter through the wall, and gg-p =
391 Mpa.

Applying the above values of fg, gg-gp and gg.p to Equation (7), along
with a = 16 mm = 0,016 m, gives an applied K = 166 MPa'ml/2, This {s somewhat
above the Kyo value from the cylinder material, 162 MPa'ml/z, 8o the fast
failure would not be unexpected. The important point is that both the crack
shape and rewidual stresses had significant contributions to the fas.
fracture. These factors must be reckoned with in the fracture analysis of
pressure vessels,

Environmental Fracture

Environmentally assisted fracture is an importaat consideration in
pressure vessels because three basic requirements for this type of fracture
are often present, susceptible material, sustained tensile loading, and
aggressive environment. Pressure vessels are often made of high strength
mgterials, many of which are susceptible to envirommentally assisted fracture.
Long time applied or residual stresses are common in pressure vessels., Flulds

which may be aggressive are contained.

13Timoshenko, S. and MacCullough, G, H., Elements of Streungth of Materials,
D. Van Nostrand Co., Princeton, NJ, 1949, p. 26.
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ﬁ‘g The abovae tHree requirements were present and lad to a recent example of
streszs corroslon cracking in a cannon tube. The high strength steel alloy is
susceptible to stress corrosion cracking in certain envt?onments. The sub-
tained tensile loading present in this case 1s believed to be tensile residual
i 1 stress which was caused by compressive yielding resultiug from the combination
of thermal and overstrain stresses st the inner radiug of the tube. The
environment was the firing products which include hydrogen suifide, a highly
aggressive enviromment for stress corrosion c.acking in many steels.
i The stress corrosion cracking of the cannon tube is described by two pho-
tomicrographs., Figure 9a 18 a cross—secLion of a piece of a tube in which
. cracking has occurred. The section is lightly shaded due to the metallo-
h : graphic polish. It contains two rifling lands at the inner radius. The pri-
mary crack started at the corner of a rifling land, grew by mixed stress cor-
rosion and fatigue cracking (location 1), and then grew in the radial direc-
tion by mixed fatigue and fast cracking (location 2) out toward the outer
radius and a leak-before-break failure. A smaller crack at a rifling land

(location 3) is shown at higher magnification in Figure 9b, The classic,

multiply-branched cracking 1is a clear indication of stress corrosion cracking.

¥igure 10 shows scanning electron microscope fractographs which compare Lhe

stress corrosion, fotigue, and fast fracture regions and further confirm that
the in{tiation and primary cause of the failure was enviroumentally assisted
fracture.

This enviroumentally controlled failure in a gun tube occurred after

several years of service, snd tha final failure was safe and contained. The

e e maa

delay in environmentally sssisted failure naarly always occurs; the safe final
condition does not. Whenaver the combination of sustained loading and an

14
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unsuitable material/environment couple is present in a pressure vensel,
environmentelly assisted failure must be considered.

Fatigue Fracture

Repeated application of pressure to vessels provides the means whereby
cracks, which initiate due to strese concentrations or service environments,
can grow to the critical size required for fast fracture. This is a common
sequence of events for cannon pressure vessels. Often the fatigue crack
growth process is most of &he life of a cannon, so considerable fatigue life
testing and assoclated analysis of cannons has been performed. References 14,
15, and 16 are examples. Much of the life testing and analysis has centered
on the two factors already discussed here, crack shape and residual stress.
With the recent comprehensive work of Newman and Raju,3 the effects of crack
shape on K and thus on cracking and fatigue life can be well characterized.
Also, many investigators are now addressing the second factor, the effects of
residual stress on life., In demonstration of this, a new ASTM subcommittee

has recently been formed, E9.02, Residual Stress Effects in Fatigue.

3Newman, J. C., Jr., and Raju, I. S., "An Empirical Stress-Intensity Factor
Equation for the Surface Crack," Engineering Fracture Mechanics, Vol, 15,
1981, pp. 185-192.

l4payidson, T. E., Brown, B. B., and Kendall, D. P,, "Materials and Processes

" Considerations in the Design of Pressure Vessels,” High Pressure
En;ineering, H.L.I.D. Pugh, Ed., The Institution of Mechanical Engineers,
1 7, PP 63-71.

15pavidson, T. E. and Throop, J. F., "Practical Fracture Mechanics
Applications to Design of High Pressure Vessels,” Application of Fracture
Mechanics to Design, J. J, Burke and V. Weiss, Ede., Plenum Publishing
Corp., New York, 197", pp. 111-138.

l6pgrker, A. P., Underwood, J. H., Throop, J. F., and Andrasic, C. P., "Stress
Intensity and Fatigue Crack Growth in a Pressurized Autofrettaged Thick
Cylinder,” submitted to Proceedings of 14th National Symposium on Fracture
Mechanics, Los Angeles, June 1981,
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The work of Parker et all® specifically addresses the effects of residual
stress on the life of cannon pressure vessels. They developed K expressions
for pressurized cylinders with overstrain residual stress, and they numeri-

cally integrated da/dN versus AK expressions to calculate life as affected by

residual stress. Comparison of calculated with actual lives led them to con-

!

clude that accurate determination of the residual stress actually present in a

cylinder is required for reliable life calculations. A reexamination of Fig-.

ure 4 will support this conclusion. TIn all the plots shown, the compressive

stress 1s significant relative to yield strength near the lnner radius, where

much of the fatigue life 1is expended. Thus, the correctness of this residual

ampEem sl mm TR

- - e
e

stress will have a large effect on the calculated life, and a small change 1in

L~

this stress can have a much magnified effect on the actual life, because there

is a near balance between applied tension and residual compression stress. In

T e e T RGO

the following last example of fracture mechanica analysis of cylindrical
pressure vesgeis, an estimate of the actual residual stress distribution in an
% g overstrained cylinder and its effect on fatigue life will be described.

. Comparison will be made between calculated fatigue life and laboratory

‘ measurementsl® from full size cylinders.

First, an estimate of the actual residual stress distribution in an
l overstralned cylinder 1s made, as opposed to an analysis which assumes ideal

elastic unloading of a cylinder during overstrain. Milligan6 showed that A723

6Milligan, R. V., Koo, W. H., and Davidson, T. E., "The Bauschinger Effect in
a High-Strength Steel,” Journal of Basic Engineering, Transactions ASME,
Vol. 88, 1966, pp. 480-488.
6Parker, A, P., Underwood, J. H., Throop, J. F., and Andrasic, C. P., "Stress
| Intensity and Fatigue Crack Growth in a Pressurized Autofrettaged Thick
o Cylinder,"” submitted to Proceedings of l4th National Symposium on Fracture
ﬁ‘ Mechanics, Los Angeles, June 1981,
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type steels, following tensile plastic deformation, exhibit a reduction in
compressive strength properties, called the Bauschinger effect. For the situ-

o ation here, the overstrailn of & cylinder, Figure 11 summarizes this effect.

The plot is an estimate of the effective stress versus straln history at the
1‘i inner radius of an rp/r] = 2.0 cylinder as it undergoes a 100% overstrain pro-

cedure, Davidson et all’ calculated the tensile plastic deformation for these

conditions to be 1.01%., For this amount of tensile plastic deformation, the

reduced compressive yleld propertiea6 are compared with linear unloading in

Figure 11, Using the reduced properties, corrected values of overstrain

residual stress in a cylinder can be obtained. For example, from Figure 11

«q
!
.

the value of circumferential residual stress at the inner radius, og-g, for

el Skt

{'f ideal linear unloading 1s 0.85 times the unaffected yileld streangth, or 1000

o,

‘ MPa in this case. When the reduced compressive yield propertiés are used, the
corrected value 1s 620 MPa. Applying such corrected values of compressive
yleld strength to several points in the compressive residual stress reglon of
the overstrained cylinder gives the corrected residual stress distribution
plots shown in Figure 4. The tensile portion of the corrected plots in Figure

( 4 was obtained by reducing the total area above zero stress in the tension
portion by the same ratio as that obtalned in the compression portion.

; ‘ A proof of a corrected residual stress distribution 18 to use it to

calculate fatigue life for comparison with experiment. This was done and 1s

6Milligan, R. V., Koo, W. H., and Davidson, T. E., "The Bauschinger Effect in ‘
a High-Strength Steel,” Journal of Basic Engineering, Transactions ASME,
Vol. 88, 1966, pp. 480-488.
17Davidson, T. E., Barton, C. S., Reiner, A. N.,, and Kendall, D. P.,
3 "Overstrain of High-Strength Open-End Cylinders of Intermediate Diameter
| Ratio," Proceedings of the First International Congress on Experimental
Mechanics, Pergamon Press, Oxford, 1963, pp. 335-352.

17
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sumnarized in Figures 12 and 13, TFatigue life calculations were made for the
conditions of recent fatigue life experiments,16 0% and 60% overstralned
cylinders with rp/r) = 2.0, r) = 90 mm, yield strength = 1175 MPa, internal
pressure p = 331 MPa, and a semicircular starter notch with inftial depth af = .
6.4 mwm, Piguie 12 shows the residual stress distribution calculated from
Equations (2) and (3) which assume ideal elastic unloading. Also shown is the
distribution corrected for reduced compressive strength, using the method
described in relation to Figures 4 and 1l. The compressive residual stress at

the inner radius, vg.g for r = rj, 1is decreas: from -860 MPa to ~600 MPa

by the correction.

The ideal and corrected stress distributions shown in the lower plot of

Figure 12 are used to obtain K distributions for a pressurized, overstrained
tube using the following general expression4

K/og(ma)l/2 = 1.12 - 0.68(a/ag) , (9)
Equation (9) is a short crack K expression for a linear varying stress
distribution in which o, is the stress for a = 0, that is, at the edge of the
specimen, and ag is the crack length for ¢ = 0, that is, for the point where
the stress distribution crosses the zero stress line. Equation (9) can be
applied to the nearly linear stress distributions in Figure 12 by letting o, =

dg-g (for r = r}) and ag = 0.38 W, that is, vr/ry = 1.38., Doing so and

AUnderwood, J. H. and Throop, J. F., "Surface Crack K~Estimates and Fatigue
Life Calculations in Cannon Tubes," Part~Through Crack Fatigue Life
Prediction, ASTM STP 587, J, B. Chang, Ed., American Soclety for Testing and .
Materials, 1979, pp. 195-210. '1

l6parker, A. P., Underwood, J. H., Throop, J. F., and Andrasic, C. P.,, "Stress
Intensity and Fatigue Crack Growth in a Pressurized Autofrettaged Thick j
Cylinder,” submitted to Proceedings of l4th National Symposium on Fracture
Mechanics, Los Angeles, June 1981i.
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combining the resulting K distribution for compressive stiess with that froun
the applied tensile loading due to pressure? gives the total K distributions
shown in the upper plot of Figure 12. Note that the total KX, based on ideal

elastic unloading, nearly vanishes for r = r], whereas the total K corrected

i:. for reduced compressive stress 1s significantly higher. This has a significant

effect on fatigue life.

Fatigue life can be calculated from a known K distribution by integration

f; of a Paris—Erdogan18 type equation:

da/dN = ¢ ak?3 (1o

where C is a material constant from fatigue growih rate tests, and the pover

is often a good representation for steels. For applications in which Lhe
winimum load 1is either compression or zero, as is the case here, AK 1is
aquivalent to the maximum K. If it can be assumed that the simple K paramot. .,
fie = K/p(na)l/z, remains constant, the integration of Equation (10) 1is simple.
Referring agaln to Figure 12, fi is nearlv constant for K due to pressure only,
but is less so for Lotal K. Nevertheless, a constant value of £y will he uscd
here with the rationale that the selectior of a representative, average fi will
! provide a consistent, readily understandabi: method for calculating faliyue
1ife. Taking this approach, the integration of HEquation (10) gives

-------------------- crn
C(ffg pnt/2)3

=
It

2Bowie, 0. L. and Freese, C. E., "Elastic Analysis For a Radial Crack in a
Circular Ring," Engineering Fracture Mechanics, Vol. 4, 1972, pp. 315-321.
18Paris, P. C. and Erdogan, F., "A Critical Analysis of Crack Propagation

Laws,” Journal of Basic Engineering, Transactions ASME, Vol. 85, 1963, pp.
528-534.,
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where N is the nuwmber of pressure cycles required to grow a crack from an
initial to a final crack depth, aj to af. Calculations of N were made using
the following values in Equation (11): aj = 0.0064 m; ag = 0.090 m, the full
wall thickness; C = 6.52 x 10-12 cyc:le"1 MPa~3 m’l/z, the value from growth
rate tests; p = 331 MPa; fy = 2.76 for 0% overstrain, 1.37 for 60% corrected,
1.00 for 60% ideal; fg = 0.53., The values of fy weré taken from Figure 12 for
r/r] = 1.2, which was selected by engineering judgment as the crack depth, a/W
= 0.2, which gives a representative value of K for describing fatigue life.
The value of fg was taken from Reference 3 for this crack depth, a/W = 0.2,
and the semicircular shape, a/2c = 0.5,

The comparison of calculated with experimental a versus N curves 1s shown
in Figure 13. The experimental curves are based on crack depth measurements
using an ultrasonic method and on markings observed on the fracture surface
after the tests., The crack shape remained neariy semicircular throughout both
tests. The calculated curves for 0% overstraln and 60% overstrain with {deal
elastic unloading result 1in about the same comparison with experiment as
observed in the numerical calculations of Parker et al,!6 that {e, the 0%
calculation is less than half of the experimental life and the 607% ideal
calculation 1is more than twice the experimental life. The calculated curve

for 50% overstrain with correction fo:r reduced compressive strength agrees

3Newman, J. G., Jr., and Raju, I. S., "An Empirical Stress-Intensity Factor
Equation for the Surface Crack,"” Engineering Fracture Mechanics, Vol. 15,
1981, pp. 185-192. -

16Parker, A. P.,, Underwood, J. H., Throop, J. F., and Andrasic, C. P., "Stress
Intensity and Fatlgue Crack Growth in a Pressurized Autofrettaged Thick
Cylinder,” submitted to Proceedings of 1l4th National Symposium on Fracture
Mechanilcs, Los Angeles, June 1981.
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nmuch better with experiment and, in addition, is more consistent becausc [t
underpredicts the experimental life as does the 0% calculation. In summary,
the proposed correction accounts for the known redu:tion in compressive

strength of the material, and it also gives better and more consistent

agreement between calculated and experimental fatigue life.
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Brittle Fallure of 175 mm Cannon Tube.

Figure 1.
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FIGURE 2
FAILURE AND REDESIGH OF 175 MM CANNON TUBE
SEQOMETRY; LOADING
' RL = 89 m, R2 = 186 ma; R2/RL = 2.09
P = 345 MPa, CYCLIC LOADING

|
i

- EAILURE CONDITIONS
’ MATERIAL: Oys = 1180 MPa; IMPACT ENERGY = 7.
) ch = 90 HPA'HI/Z
iy CRITICAL CRACK SIZE: Ac = 9.4 Mty Ac/2C = 0.33; Ac/W = 0.10
RESIDUAL STRESS: Cg-g = O
) APPLIED K: K = Fpip,/ryarm) Fscasac,anmy VA
8 K = 112 MPa-u1/2
. KappLiep > Klcs FAILURE EXPECTED
REDESIGN COMDITIOQNS
MATERIAL: Oys = 1030 MPAs; IMPACT ENERGY = 34J,
Kic = 137 MPa-m1/2
| RESIDUAL STRESS: De-r = -520 MPa AT R = R}
. = -390 MPA AT R = R] + 0.1N
| APPLIED K:
; ' FOR SHALLOW CRACKS:

K P/A + Og-pJTTA

— el

* FeRorrpazes Ts(az2c.am) 112 Fs pr2¢.a7%)
FOR A = 0.10W:

K= 112 - 52 = 60 MPa-Ml/2

KappLiep < Klc: FAILURE NOT EXPECTED

‘
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Figure 3, Contained Leak-Refore-Break Cracking in a Cannon,
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Figure 5.

Arc Specimens for Fracture Mechanics Tests of
Material in Hollow Cylinder Geometries.
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(a) Location 1 - Mised Stress Corrosion and Fatigue Cracking;
Location 2 - Fast Fracture;
Location 3 - Initiation of Stress Corrosion Cracking at Rifling Land; 15X

(b) Micrograph of Location 3, 100X.

Figure 9, Stress Corrosion Cracking in a Cannon Tube.
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